
Nick Neisen October 27, 2015
CENG 414 - Introduction to Computer Vision
Homework 7

Introduction

The purpose of this lab was to write our own fspecial and gradient functions and use them for edge
detection. To test our code we were given a Matlab example using the standard functions that we
could replace with ours. The fspecial function creates difference sized kernels that follow common
curves in 3D such as Gaussian. The gradient takes an image and finds the gradient of that image.

Procedure

To test the edge detection of our program we were asked to find an image to use for the lab. My
original image can be seen in Figure 1. The figures following compare the output of the Matlab
functions on the right to the output created using my functions on the left. In the first set of
images we can make out the edges but there is some blurring. By using both of the functions
created together we can see that there are more edges and they are more distinct.

The first step of the lab was to create the gradient function. This function allows the user to
pass in an image and the distance between each step. The gradient function creates two arrays
the same size as the image for holding the results. It then iterates over the image and finds the
derivative with respect to x and y. These values values are placed into their respective array at the
corresponding position.

Three techniques were used to calculate the derivative depending on the current position in the
array. The majority of the values can be calculated using the central difference. This can be
expressed as:

δh[f](x) = f(x+
1

2
h)− f(x− 1

2
h)

This is the most accurate way to find the difference but it runs in to some difficulties. When finding
the first and final values of the array this would cause us to go out of bounds. For this reason we
also need to use the forward difference:

∆h[f](x) = f(x+ h)− f(x)

and the backward difference:
∆h[f](x) = f(x)− f(x− h)

With these equations are are able to successfully find the gradient of the image. The results of the
horizontal and vertical gradients can be seen in Figures 2-7.

1

The second function we need to write is one to create different types of kernels for filtering. These
filters are used to generate difference effects when convolving with an image. Our function must
be able to create different types of kernels depending on the first argument passed into it. The
types of kernels required are the Gaussian, Prewitt, Sobel, and Roberts. The Gaussian filter can
be created using:

G(x, y) =
1

2πσ
e−

x2+y2

2σ2

The result of this can be seen in Figure 12 & 13. The remaining filters are always used with
specific matrix sizes. Each of these can be seen below:

G(x, y) =

 1 1 1
0 0 0
−1 −1 −1

Prewitt

G(x, y) =

 1 2 1
0 0 0
−1 −2 −1

Sobel

Gx(x, y) =

[
1 0
0 −1

]
Gy(x, y) =

[
0 1
−1 0

]
Roberts

Conclusion

Having these functions available in Matlab makes it easy to get going and start coding, however,
taking the time to write these ourselves helps us to gain a better understanding of what these are
doing and the effect they have on our images. Finding the gradients of an image gives us the edges
of the image because the change in pixel magnitude is greatest at these points. By convolving the
images with a filter before finding the gradient, we can make the lines of the edges more distinct.

2

Figures

Figure 1: Original image

Figure 2: My X Gradient Figure 3: Original X Gradient

Figure 4: My Y Gradient Figure 5: Original Y Gradient

3

Figure 6: My Magnitude Gradient Figure 7: Original Magnitude Gradient

Figure 8: My Filtered X Edges Figure 9: Original Filtered X Edges

Figure 10: My Filtered Y Edges Figure 11: Original Filtered Y Edges

4

Figure 12: My Filtered Edges Figure 13: Original Filtered Edges

Figure 14: My Gaussian Filter Figure 15: Original Gaussian Filter

Figure 16: My Prewitt Filter Figure 17: Original Prewitt Filter

5

Figure 18: My Sobel Filter Figure 19: Original Sobel Filter

Figure 20: Roberts horizontal filter Figure 21: Roberts vertical filter

6

Appendix

Main Matlab

clc;
clear all;
close all;

% Load in the image
I = imread('subaru-brz.jpg');
% Convert it to BW
I = rgb2gray(I);
% Convert to doubles
I = im2double(I);

%% Creating our own gradient function
% Find the gradient of the image
[Iy,Ix] = gradient(I);
[myIx,myIy] = myGradient(I);

% Combine the horizontal and vertical edges
Iedge = sqrt((Ix.ˆ2) + (Iy.ˆ2));
myIedge = sqrt((myIx.ˆ2) + (myIy.ˆ2));

% Show the original edges
figure();
imshow(Ix,[]);
set(gca,'position',[0 0 1 1],'units','normalized');
figure();
imshow(Iy,[]);
set(gca,'position',[0 0 1 1],'units','normalized');
figure();
imshow(Iedge,[]);
set(gca,'position',[0 0 1 1],'units','normalized');

% Show my edges
figure();
imshow(myIx,[]);
set(gca,'position',[0 0 1 1],'units','normalized');
figure();
imshow(myIy,[]);
set(gca,'position',[0 0 1 1],'units','normalized');
figure();
imshow(myIedge,[]);
set(gca,'position',[0 0 1 1],'units','normalized');

%% Creating our own fspecial function
% Make a Gaussian kernel
H = fspecial('gaussian',10);
myH = myFSpecial('gaussian',10);

% Find the gradients of the Gaussian
[Hx, Hy] = myGradient(H);
[myHx, myHy] = myGradient(myH);

7

% Conolve the kernel with the image to find edges
Ix = myConvolution(I, Hx);
Iy = myConvolution(I, Hy);
myIx = myConvolution(I, myHx);
myIy = myConvolution(I, myHy);

% Combine the horizontal and vertical edges
Iedge = sqrt((Ix.ˆ2) + (Iy.ˆ2));
myIedge = sqrt((myIx.ˆ2) + (myIy.ˆ2));

figure();
imshow(Ix,[]);
set(gca,'position',[0 0 1 1],'units','normalized');
figure();
imshow(Iy,[]);
set(gca,'position',[0 0 1 1],'units','normalized');
figure();
imshow(Iedge,[]);
set(gca,'position',[0 0 1 1],'units','normalized');

figure();
imshow(myIx,[]);
set(gca,'position',[0 0 1 1],'units','normalized');
figure();
imshow(myIy,[]);
set(gca,'position',[0 0 1 1],'units','normalized');
figure();
imshow(myIedge,[]);
set(gca,'position',[0 0 1 1],'units','normalized');

8

My gradient Matlab

function [gradientY,gradientX] = myGradient(image, distance)
% Default distance of 1
if nargin < 2

distance = 1;
end

% Get the dimensions of the matrix
[height,width] = size(image);

% Create two 0 matrices for the derivatives
gradientX = zeros([height,width]);
gradientY = zeros([height,width]);

% Go through each pixel in the image
for x = 1:width

for y = 1:height

% Find the derivative with respect to X
if x == 1

% Forward difference on the first value
gradientX(y,x) = (image(y,x+1)-image(y,x))/distance;

elseif x == width
% Backwards difference on the final value
gradientX(y,x) = (image(y,x)-image(y,x-1))/distance;

else
% Central difference on the other values
gradientX(y,x) = 0.5*(image(y,x+1)-image(y,x-1))/distance;

end

% Find the derivate with respect to Y
if y == 1

% Forward difference on the first value
gradientY(y,x) = (image(y+1,x)-image(y,x))/distance;

elseif y == height
% Backwards difference on the final value
gradientY(y,x) = (image(y,x)-image(y-1,x))/distance;

else
% Central difference on the other values
gradientY(y,x) = 0.5*(image(y+1,x)-image(y-1,x))/distance;

end
end

end
end

9

My FSpecial Matlab

function kernel = myFSpecial(type,size,mean)

% Check if the user just wants a square kernel
if nargin > 1 && length(size) == 1

size = [size,size];
mean = 0.5;

end

if strcmp(type,'average')
kernel = (1/(size(1)*size(2))).*ones(size(1),size(2));

end

if strcmp(type,'disk')
% Initialize our kernel to all zeros
kernel = zeros((size(1)*2)+1,(size(1)*2)+1);

% Cut the sizes in half
size = length(kernel(:,1))/2;

% Create a mesh grid
for x = -size:size-1

for y = -size:size-1
kernel(y+size+1,x+size+1) = 1/abs(x*y);

end
end

end

if strcmp(type,'gaussian')
% Initialize our kernel to all zeros
kernel = zeros(size(1),size(2),2);

% Cut the sizes in half
xSize = (size(1)-1)/2;
ySize = (size(2)-1)/2;

% Create a mesh grid
for x = -xSize:xSize

for y = -ySize:ySize
kernel(y+ySize+1,x+xSize+1,1) = x;
kernel(y+ySize+1,x+xSize+1,2) = y;

end
end

% Find Hg
hg = exp(-((kernel(:,:,1).ˆ2)+(kernel(:,:,2).ˆ2))/(2*meanˆ2));

% Get the final kernel values
kernel = hg./sum(hg(:));

end

if strcmp(type,'laplacian')
kernel = ones(3,3);

10

for x = 1:3
for y = 1:3

if x==2 && y==2
kernel(y,x) = -1;

elseif x==2 | | y==2
kernel(y,x) = (1-size(1))/4;

elseif x==1 | | x==3 | | y==1 | | y==3
kernel(y,x) = size(1)/4;

end
end

end

% Once last multiplier
kernel = (4/(size(1)+1)).*kernel;

end

if strcmp(type,'log')
% Initialize our kernel to all zeros
kernel = zeros(size(1),size(2),2);

% Cut the sizes in half
xSize = (size(1)-1)/2;
ySize = (size(2)-1)/2;

% Create a mesh grid
for x = -xSize:xSize

for y = -ySize:ySize
kernel(y+ySize+1,x+xSize+1,1) = x;
kernel(y+ySize+1,x+xSize+1,2) = y;

end
end

% Find Hg
hg = exp(-((kernel(:,:,1).ˆ2)+(kernel(:,:,2).ˆ2))/(2*meanˆ2));

% Get the final kernel values
kernel = hg./sum(hg(:));

for x = 1:size(1)
for y = 1:size(2)

k = ((xˆ2)+(yˆ2)-(2*(meanˆ2)))/(2*pi*(meanˆ6));
kernel(y,x) = k*kernel(y,x);

end
end

end

if strcmp(type,'motion')
% Check if the size is odd
if mod(size(1),2) == 0

for x = 1:size(1)+1
if x==1 | | x==size(1)+1

kernel(x) = 1/(2*size(1));
else

kernel(x) = 1/size(1);
end

end
else

11

for x = 1:size(1)
kernel(x) = 1/size(1);

end
end

end

if strcmp(type,'prewitt')
kernel = [1 1 1;0 0 0;-1 -1 -1];

end

if strcmp(type,'sobel')
kernel = [1 2 1;0 0 0;-1 -2 -1];

end

if strcmp(type,'roberts')
kernel(:,:,1) = [0 1;-1 0];
kernel(:,:,2) = [1 0;0 -1];

end
end

12

